
               
TIME ALLOWED:  THREE HOURS MAXIMUM MARKS = 100
NOTE: (i) Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and

ONE Question from SECTION-C. ALL questions carry EQUAL marks.
(ii) All the parts (if any) of each Question must be attempted at one place instead of at different 

places.
(iii)  Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
(iv)   No Page/Space be left blank between the answers. All the blank pages of Answer Book must 

be crossed.
(v)    Extra attempt of any question or any part of the attempted question will not be considered.
(vi)    Use of Calculator is allowed.

SECTION-A

Q. 1. (a) 

(b)   

Prove that the normaliser of a subset of a group G is a Subgroup of G.

Let A be a normal subgroup and B a subgroup of a group G. Then prove that 
< A,B > = AB

    (10)

(10) (20)

Q. 2. (a)

(b)

Let a be a fixed point of a group G and consider the mapping Ia : G→G defined 

by Ia(g)= aga-1 where g∈G.

Show that Ia is an automorphism of G. Also show that for a, b ∈ G, Ia .Ib=Iab

Let M2 (R) = 
















Rdcba

dc

ba
,,,: be the set of all 2×2 matrices with 

real entries. Show that ( M2(R), +, ∙ ) forms a ring with identity. Is ( M2(R), +, ∙ )
a field?


   (10)

(10) (20)

Q. 3. (a)

(b)

Let T: X→Y be a linear transformation from a vector space X into a Vector 
space Y. Prove that Kernal of T is a subspace. 

Find the value of λ such that the system of equations 

   x +  λy + 3z = 0

          4x + 3y +  λz = 0

          2x +   y + 2 z = 0

has non-trivial solution.

     (10)

(10) (20)

SECTION-B

Q. 4. (a)

(b)

Using ߜ- ∈ definition of continuity, prove that the function Sin2x is continuous 
for all x ∈ R.

Find the asymptotes of the curve (x2-y2)(x+2y) + 5 (x2+y2) + x+y =0

   (10)

(10)    (20)

Q. 5.
(a) Prove that the maximum value of 

x
x )( 1

is e1/e .

ሖ

   (10)
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Q. 6. (a)

(b)

Find the area enclosed between the curves  y=x3 and y=x.

A plane passes through a fixed point (a, b, c) and cuts the coordinate axes in 
A,B,C. Find the locus of the centre of the sphere OABC for different positions 
of the plane, O is the origin. 

   (10)

(10)    (20)

SECTION-C

Q. 7. (a)

(b)

Determine 
)(zP

where

)(zP = ))()()(( 4321 zzzzzzzz  with 1312
4

1 ,, zzzzez
i




and 14 zz  .

Find value of the integral    ,
0 

c

zdnzz (n any integer) along the circle C

..........with centre and 0z radius r, described in the counter clock wise direction.

   (10)

(10)    (20)

Q. 8. (a)

(b)

Use Cauchy Integral Formula to evaluate ∫ ௦z ା௦ଶz
z ି୧ଶൗ zd along the simple 

closed counter C: | z |=3 described in the positive direction.

State and prove Cauchy Residue Theorem.

   (10)

(10)    (20)
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