

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-II

TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MAR PART-I(MCQS): MAXIMUM 30 MINUTES PART-II MAXIMUM MAR						
NOTE: (i) Part-II is to be attempted on the separate Answer Book.						
(ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.						
(iii) All the parts (if any) of each Question must be attempted at one place instead of at different						
places.						
	(iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.					
	(v) No Page/Space be left blank between the answers. All the blank pages of Answer Book mus be crossed.					
	(vi) Extra attempt of any question or any part of the question will not be considered.					
	(vii)	Use of Calculator is allowed.				
		<u>PA</u>	RT – II			
Q. 2.	(a)	Consider an infinitely long cylindrical insulating shell of inner radius a , and outer radius b , and has a uniform volume charge density ρ . If a line of charge density λ is placed along the axis of the shell then determine the electric field intensity at a point r such that (i) $a < r < b$ and (ii) $r > b$.				
	(b)	Determine the energy density for	a capacitor.		(6)	
	(c)				(6) (20	
Q. 3.	(a)	Find the magnetic energy density	for the magnetic fiel	d of the industor	(10)	
(b)		Find the magnetic energy density for the magnetic field of the inductor. Sate and explain the Lenz's law.		(6)		
	(c)	Why is the work done by a mag zero?	gnetic field on a ch	arged particle always	(4) (20	
Q. 4.	(a)	Describe the properties of each of, an electron and the light, that show their dual nature.		(8) (6)		
	(b)	State and explain the de Broglie h	ypothesis?		. ,	
	(c)	Metals A, B and C have work fun light of wavelength 320nm is inci (i) Which metals exhibit photo (ii) Maximum kinetic energy of	ctions 2.2eV, 3.6eV dent on these, then find belectric effect?	nd	(6) (20	
Q. 5.	(a)	Determine the transmission co-e	•		(14)	

Q. 5. (a) Determine the transmission co-efficient for a particle having energy E incident on a rectangular barrier, so that $E < V_0$, the barrier is given by

$$V(x) = \begin{cases} +V_0 & for -a < x < a \\ 0 & for |x| > a \end{cases}$$

- (b) For an operator \hat{A} , we know $[\hat{H}, \hat{A}] = 0$, where \hat{H} is the Hamiltonian operator, what can we conclude about the eigen states of \hat{A} and the $\langle \hat{A} \rangle$?
- (c) Give two examples for the operator \hat{A} , given in part (b) above. (2) (20)

PHYSICS, PAPER-II

Q. 6. (a) Describe the electrical conduction in different types of solids in terms of (8) band theory. Explain the crystal structure of diamond. **(b)** (6) Find the carrier concentration of electrons in Silicon at a temperature (c) **(6) (20)** of 25°C. Q. 7. What factors contribute to the stability of a nucleus? Draw and explain the (10)(a) plot of neutron number N versus atomic number Z for stable nuclei. Explain the use of chain reaction in relation to a nuclear reactor. (6) **(b)** The stable isotope of potassium is ¹⁹K, what kind of radioactivity do you (c) **(4) (20)** expect from ¹⁸K? Give reasons. Q. 8. Write notes on any **TWO** of the following: (10 marks each) (20)Poynting Vector (a)

Fusion in stars

MOSFET

(b)

(c)