

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2024 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

## **PURE MATHEMATICS**

| TIME ALLOWED: THREE HOURS                                                                                                                                                 |                                                                                                             | MAXIMUM MARKS = 100                                                                    |       |                      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------|----------------------|--|
| NOTE: (i) Attempt FIVE questions in all by selecting TWO Questions each from SECTION                                                                                      |                                                                                                             |                                                                                        |       | <b>B</b> and         |  |
| (ii)                                                                                                                                                                      | (ii) All the parts (if any) of each Question must be attempted at one place instead of at different         |                                                                                        |       |                      |  |
| places.                                                                                                                                                                   |                                                                                                             |                                                                                        |       |                      |  |
| (iii) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.<br>(iv) No Page/Space be left blank between the answers. All the blank pages of Answer Bo |                                                                                                             |                                                                                        |       | ust                  |  |
| be crossed.                                                                                                                                                               |                                                                                                             |                                                                                        |       | ast                  |  |
| (v)<br>(vi)                                                                                                                                                               | (v) Extra attempt of any question or any part of the attempted question will not be considered.             |                                                                                        |       |                      |  |
|                                                                                                                                                                           |                                                                                                             |                                                                                        |       |                      |  |
| <u>SECTION-A</u>                                                                                                                                                          |                                                                                                             |                                                                                        |       |                      |  |
| Q. No.1.(a)                                                                                                                                                               | a) Let N be a normal subgroup of a group G. If H is a subgroup of G, then prove                             |                                                                                        | (10)  |                      |  |
|                                                                                                                                                                           | that $NH = \{nh : n \in Nandh \in H\}$ is a subgroup of G.                                                  |                                                                                        |       |                      |  |
| <b>(b)</b>                                                                                                                                                                | If <b>E</b> is an epimorphism from a group G onto a group H then prove that $G/K$ is                        |                                                                                        | (10)  | (20)                 |  |
|                                                                                                                                                                           | isomorphic to $H$ , where $K = Ker E$ .                                                                     |                                                                                        |       |                      |  |
| Q. No.2. (a)                                                                                                                                                              | Let <i>R</i> be a ring. If every $x \in R$ satisfies $x^2 = x$ then prove that <i>R</i> is a commutative.   |                                                                                        | (10)  |                      |  |
|                                                                                                                                                                           |                                                                                                             |                                                                                        | (10)  | $\langle 20 \rangle$ |  |
| (b)                                                                                                                                                                       | For which value(s) of <i>a</i> will the follow<br>one solution? Infinitely many solution                    | s?                                                                                     | (10)  | (20)                 |  |
|                                                                                                                                                                           | x + 2y                                                                                                      | 3z = 4                                                                                 |       |                      |  |
| 3x - y + 5z = 2<br>$4x + y + (a^2 - 14)z = a + 2.$                                                                                                                        |                                                                                                             |                                                                                        |       |                      |  |
|                                                                                                                                                                           |                                                                                                             |                                                                                        | (1.0) |                      |  |
| Q. No.3. (a)                                                                                                                                                              | Determine a basis for and the dimension of the solution space of the system<br>x-2z+w=0                     |                                                                                        | (10)  |                      |  |
|                                                                                                                                                                           | 3x + y - 5z = 0                                                                                             |                                                                                        |       |                      |  |
|                                                                                                                                                                           | x+2y-5w=0.                                                                                                  |                                                                                        |       |                      |  |
| <b>(b)</b>                                                                                                                                                                | Let $v_1 = (1, 1, 1)$ , $v_2 = (1, 1, 0)$ and $v_3 = (1, 0, 0)$ be a basis for $\mathbb{R}^3$ . Find        |                                                                                        | (10)  | (20)                 |  |
|                                                                                                                                                                           | a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(v_1) = (1, 0)$ , $T(v_2) = (2, -1)$ |                                                                                        |       |                      |  |
|                                                                                                                                                                           | and $T(v_3) = (4, 3)$ .                                                                                     |                                                                                        |       |                      |  |
| SECTION-B                                                                                                                                                                 |                                                                                                             |                                                                                        |       |                      |  |
| Q. No.4. (a)                                                                                                                                                              | Evaluate the limit:                                                                                         |                                                                                        | (10)  |                      |  |
|                                                                                                                                                                           | (i)                                                                                                         | $\lim_{x \to \pi} (1 + \cos x)^{\tan x}$                                               |       |                      |  |
|                                                                                                                                                                           | (ii)                                                                                                        | $x \rightarrow \overline{2}$                                                           |       |                      |  |
|                                                                                                                                                                           | (11)                                                                                                        | $\lim_{x\to 0} \left( \frac{1}{\sin x} - \frac{1}{x} \right)$                          |       |                      |  |
| ( <b>b</b> )                                                                                                                                                              | State and prove the Mean Value Theo                                                                         | rem.                                                                                   | (10)  | (20)                 |  |
|                                                                                                                                                                           |                                                                                                             |                                                                                        |       |                      |  |
| Q. No.5. (a)                                                                                                                                                              | If $w = f(x^2 + y^2)$ then show that $y\left(\frac{\partial}{\partial x}\right)$                            | $\left(\frac{w}{\partial x}\right) - x \left(\frac{\partial w}{\partial y}\right) = 0$ | (10)  |                      |  |

(b) Find all the local maxima, local minima and saddle points of the given (10) (20) function  $2x^3 + y^2 - 9x^2 - 4y + 12x - 2$ . Page 1 of 2

## PURE MATHEMATICS

**Q. No.6. (a)** Evaluate the integral  $\int_{0}^{\infty} x^{\frac{3}{2}} ((1+2x))^{-5} dx$  and show that the result is  $\frac{9\pi}{384}$ , (10)

using Beta function.

(b) Find the vertices and foci of the hyperbola (10) (20)  $25 x^2 - 16 y^2 + 250x + 32y + 109 = 0$ .

## **SECTION-C**

**Q. No.7. (a)** Verify that u(x,y) = cosxcoshy is harmonic function and find a (10) corresponding analytic function f(z) = u(x,y) + iv(x,y).

(b) Use Residue theorem to evaluate the integral  $\int \frac{3 z^2 + z - 1}{C(z^2 - 1)(z - 3)} dz$ , where *C* is (10) (20) the circle |z| = 4.

- **Q. No.8. (a)** Use the Cauchy's integral formula to evaluate the integral (10)  $\int \frac{z+4}{cz^2+2z+5} dz$ , where *C* is the circle |z+1-i| = 2.
  - (b) Find the three cube roots of  $\sqrt{3} + i$ . (10) (20)

\*\*\*\*\*